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On the Average Distance Between Particles in the 
Two-Dimensional Two-Component Plasma 

P. J. Forrester ~ and B. Jancovici  1'2 

The asymptotic forms of the average distance of the closest particle to a fixed 
positive charge, and of the closest particle to the origin, are obtained for 
the two-dimensional two-component plasma in the low-density limit. The 
asymptotic forms of the average areas of the corresponding disks formed by the 
closest particle are also derived. These results are verified at a special coupling 
where exact results are available. 

KEY WORDS: Two-component plasma; Kosterlitz-Thouless transition; exact 
solution. 

1. INTRODUCTION 

The two-dimensional  two-componen t  plasma (TCP)  consists of an equal 
number  of  positive and negative two-dimensional  Cou lomb  charges 
(magni tude q, say) interacting in a two-dimensional  domain.  Thus, the 
potential  energy of  a particle of charge q at r and charge q' at r '  is 

~b(r, r ' )  = - q q '  l o g ( I t -  r ' l /L) (1.1) 

(L is an arbi t rary length scale). In general, the system is characterized by 
the dimensionless parameters  F :=  q2/kT and the product  of  the density p 
and the square of the hard-core  radius a. 

A hard-core  or  similar short-distance regularization of the potential is 
necessary for F t> 2 to prevent collapse of  oppositely charged species. Even 
with this regularization, for a fixed small value of  pa  2 the system exhibits 
a transit ion from a conductive to a dipole phase. In the conductive phase 
the opposite species are free to screen perfectly an external charge density 

1 Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia. 
2 Permanent address: Laboratorie de Physique Th~orique et Hautes Energies, Universit~ de 

Paris-Sud, 91405 Orsay Cedex, France (Laboratoire Associ~ au Centre National de la 
Recherche Scientifique). 

163 

0022-4715/92/1000-0163506.50/0 �9 1992 Plenum Publishing Corporation 



164 Forrester and Jancovici 

(in the long-wavelength limit), while in the dipole phase opposite charges 
are paired so that only a fraction of an external charge density is screened. 
In the limit p 0  "2 ~ 0 the transition occurs at F =  4 ~ as distinct from F =  2, 
showing that this phenomenon is due to the large- rather than short- 
distance behavior of the logarithmic potential. 

Our concern in this paper is to provide a quantitative description of 
the microscopic configurations at equilibrium. We are especially interested 
in investigating how the average distance (and the average squared 
distance) between a given particle and its closest neighbor depend on the 
coupling constant F. It will be argued that the behaviors of these averages 
undergo drastic changes as F increases, which enhances the pairing effects. 
A related problem has been addressed by Lavaud, (2) who proved that for 
1 < F < 2  the short-distance behavior of the pair distribution function 
between opposite charges is contrary to the prediction of a theorem of 
Widom. (3) This result was first observed by Hansen and Viot (4~ through an 
analysis of Monte Carlo data. 

In Section 2 we begin by studying the average distance from the origin 
to the closest particle, and the average area of the corresponding disk. 
Then we study the average distance between a positive charge and its 
nearest neighbor charge (which in the dipole phase, we expect to be a 
negative charge), together with the average area of the corresponding disk. 
These considerations are repeated for the two-component log-potential 
plasma confined to a one-dimensional domain. Although our reasoning 
throughout this section in heuristic, the results obtained are in the form of 
precise mathematical conjectures concerning the behavior of the averages 
in the low-density pcr2~ 0 limit. 

In Section 3, exact results are presented, at the special coupling F = 2, 
for the TCP and its restriction to a one-dimensional domain. These results 
agree with the conjectures of Section 2. 

The main results are summarized in Section 4. 
Appendix A is a rederivation of an equation need in Section 3. In 

Appendix B, we give the large-R behavior of the distribution function for 
inserting a charge at the center of a hole of radius R in the TCP, when the 
TCP is in its conducting phase; this quantity first arises in Section 3, where 
it is calculated exactly at F =  2. 

2. S P A C I N G  A V E R A G E S  

2.1. Relat ionships B e t w e e n  Probabi l i t ies  

Consider the TCP with a hard-core radius ~ about the positive charges 
(for convenience the negative charges are taken as point particles). Denote 
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by hn(R) the probability that exactly n charges are within a radius R of the 
origin [note that Z ~ hn(R) = 1]. Let S(R) denote the probability density n ~ 0  

that there is no particle within radius R, but there is a particle at a distance 
between R and R + dR of the origin. Then 

S(R)  dR = ho(R) - ho(R + d e )  

d 
S(R) = - ~ ho(R) 

so that 

(2.1a) 

(2.1b) 

Consequently, the mean distance from the origin to the closest particle, 
say, which is defined as 

= RS(R)  dR 

can be expressed, using (2.1b) and integration by parts, as 

(2.2a) 

= ; o  ho(R) dR (2.2b) 

Proceeding similarly, if S ( + ,  R) denotes the probability density that 
there is a positive particle fixed at the origin with no particle within radius 
R, but there is a particle within radius R and R + dR, then 

/~+ := RS( +, R) dR (2.3a) 

can be rewritten as 

R+ = ~ + ho( +, R) dR (2.3b) 

The probability ho(+,  R) is defined analogously to ho(R), except that we 
require that there is a positive particle fixed at the origin. 

In an obvious notation, we also have 

and 

i t ,  o o  

rrR 2= 2rc j Rho(R )dR  
0 

nR 2 = ~a 2 + 2re Rho( +, R) dR 

(2.4) 

(2.5) 
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2.2. Behav ior  o f / ~  and nR  2 

From (2.2b) and (2.4) we see that /~ and ~R 2 are determined by ho(R). 
This quantity is defined so that ho(a)=  1 and is expected to decrease 
monotonically to zero with the large-R behavior (5) 

ho(R) ,-~ e ~R213p 2,~RB~ (2.6) 

where P denotes the bulk pressure and V denotes the surface tension. 
To study the low-density behavior of ho(R) and consequently /~ and 

g R  2 for the TCP, it is instructive to first consider a perfect gas of density 
p in two dimensions, for which 

ho(R) = e -  ~R2P (2.7) 

We note that (2.7) is consistent with (2.6), since for a perfect gas /~P = p 
and V=0. Using (2.7) in (2.2b) and (2.4) gives 

1 1 - -  1 
= - - -  and ~zR 2 = - (2.8) 

2 , , /~  p 

From (2.7) we see that the characteristic length scale of ho(R) for a 
perfect gas in two dimensions is 1/x/~. We would expect this also to be 
true of the TCP in the limit p ~ 0 with a fixed. Quantatively, we conjecture 
that in the limit 

p ~ 0, R ~ oo, R2p = x 2, ~ fixed (2.9) 

ho(R ) ~ H0(x), where Ho(x)  is a well-defined integrable function. 
Furthermore, we expect the low-density behavior of /~  and rcR ~ to be 

determined by the leading term in the virial expansion ~ 

~1/2,  /">_-2 (2.10) 
~P ~ aop + o(p ), ao = l l _ /"/4 ' /"<<.2 

where p denotes the total particle density. From a thermodynamic view- 
point, ao gives the number of free particles plus pairs a& a fraction of the 
total number of particles in the system. The values of r~R z should therefore 
be 1/ao times the perfect gas value while the value of/~ should be (1/ao) 1/2 
times that of the perfect gas. From (2.8) and (2.10) we thus conjecture that 
for the TCP 

/~,,. 1 1 and nR -7- ~ 1--- (2.11) 
2 (aop) I/2 aop 
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Using the conjecture stated in the sentence including Eq. (2.9), we have 
that (2.11) is equivalent to the conjecture that 

Ho(x) d x -  and 2re xHo(x) dx = -  (2.12) 
2 ~oo a o 

We observe that the function 

N o ( x  ) =- e -r~a~ (2.13) 

which is an obvious generalization of the perfect gas result (2.7), satisfies 
(2.12). In Section 3, we will show that indeed (2.13) is exact at F = 2 .  

2.3. Behavior of/7+ and nR2+ 

From (2.3a) and (2.5) we see that R+ and 7rR 2 are determined by 
ho(+,  R). This quantity can be calculated from statistical mechanics 
according to the formula 

ho( +, R) = ~( +, R)/E( + ) (2.14) 

where Z( + ) denotes the grand partition function with a positive particle 
fixed at the origin, and ~( + ,  R) denotes the grand partition function with 
a positive particle fixed at the center of an impenetrable disk of radius R. 
Simple manipulation of (2.14) and the formula 

ho(R) = Z(R)/2 (2.15) 

gives 

z _~(+, R) 
h o ( + ,  R )  = ho (R)  - -  (2.16) z(+)  z(R) 

Whereas we have argued that for all values of F, ho(R) has the charac- 

teristic length scale 1/,,/~, the final factor in (2.16) exhibits different length 
scales for its decay, depending on the value of F. Let us denote the last two 
factors in (2.16) by p ( + ,  R) and consider separately the cases F < 2  and 
F > 2 .  

Case 1. F < 2. As noted in the Introduction, for F < 2 all equilibrium 
quantities tend to well-defined limits as a --* 0. If ~ = 0, p( + ,  R) is a func- 
tion of pl/2. Furthermore, we expect the equilibrium properties to behave 
uniformly in the limit a ~ 0 +, as they will be determined by the long- 
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rather than the short-range properties of the potential. The characteristic 
length scale of p( +, R) should therefore be 1/p 1/2 for nonzero as well as 
zero values, assuming ~ ~ 1/x/ft. 

Thus, in the limit (2.9) we conjecture that p (+ ,  R) tends to a well- 
defined limit P( +,  x) and consequently 

and 

R+ ~ H(x) P( +, x) dx (2.17) 

2~ 
uR2+ ~ P xH(x) P( +, x) dx (2.18) 

Case 2. F >  2. For F >  2, p ( + ,  R) is not defined at o- = 0, due to the 
short-distance collapse, so the reasoning for F <  2 is inapplicable. However, 
in contrast to the case F < 2 ,  the first virial coefficient at least of a 
low-fugaeity expansion is finite for F >  2. This is appropriate to probe the 
behavior of p( +,  R) for R < l/x/- fi, since 1/x/p is the order of the average 
interparticle spacing, and the region within this range will most probably 
be sampled by one other particle only. The first term in the low-fugacity 
expansion gives the contribution to the grand partition function of such 
configurations. 

To perform this expansion, consider the TCP defined with position- 
dependent fugacities 

{(, Iri > R 

((Ir[)-- (o, Ir l<R (2.19) 

Then we have 

Z(+ ,  R) lim p+(0) (2.20) 
S(R) r ~o 

where p+(0) denotes the density of positive particles at the origin. For 
F >  2 we have the virial expansion 

( .  
~ =  1 +J r ( ( I r21)expE-r log(Ir l - r2 l /L]  dr1 dr2 + .-. (2.21) 

Da(rl ) t~ D 

where Da(r, ) denotes the two-dimensional domain D (the container) with a 
disk of radius tr at r~ excluded. Since 

6 log ,.~ = 
p + ( 0 )  = ( ( 0 )  - -  ( 2 . 2 2 )  a~(o) 



Two-Component Plasma 169 

we obtain from (2.21) the expansion 

p+(0)=~ofD ~( I r l ) exp ( -F log l r l /L )d2 r+- - -  
a(0) 

and thus from (2.20) 

(2.23) 

~ = ( + , R ) / 2 ( R ) = ~ f o  exp(- -Flogl r j /L)d2r+ ... 
R(O) 

The same reasoning without a hole gives 

(2.24) 

Z/Z( + ) = ~/p + (2.25a) 

r I ,22 b, 

Combining (2.24) and (2.25b) gives that to leading order in if, and for 
R< 1/,/L 

If; p(+ ,  R)=  r - r+ l  dr r - r + l  dr 

~- ( 1 7 / R ) F -  2 ( 2 . 2 6 )  

The characteristic length scale for the decay of p( +,  R) is thus a, which by 

assumption is much, much smaller than 1/,,ffi, the characteristic length 
scale for the decay of h(R). Thus the integrals (2.3b) and (2.5) defining/?+ 
and ~R2+, in the low-density limit, are determined by the integrand in the 
region R < 1/x/ft. Terminating the upper range of integration at O(1/x/-p ) 
and noting that within this region 1 > h(R)> e for some g > 0, we obtain 
the conjecture that for p ~ 0 (with a fixed) 

"A(F) a(ax/-fi) r -3 ,  2 < F < 3  

/ ~ + ~ '  aA(3) log(1/crxflp), F = 3  (2.27) 

o((v-z)/(r-3)) v > 3  

and 

fB(F)  0"2(0"~-) r--4, 2 < F <  4 

~R2+ ~ ~2B(4)log(lfirx/-p ), r =  4 

( na2((F - 2)/(F-- 4)) F > 4 

where A(F) and B(F) are some undetermined functions of F. 

(2.28) 



170 Forrester and Jancovici 

We note from (2.28) that the transition of zR 2 from a divergent to a 
finite quantity, in the low-density limit, coincides with the transition from 
a conductive to an insulator phase. (This result is implicit in the original 
paper of Kosterlitz and Thouless. (6)) 

2.4. Spacings for the TCP in a One-Dimensional Domain 

The TCP confined to a one-dimensional domain is of interest in 
condensed matter physics, as it can be mapped into a model of quantum 
Brownian motion in a periodic potential. (7) Analogous to the situation in 
a two-dimensional domain, there is a transition from a conductive to an 
insulator (dipole) phase. However, in the low-density limit, the transition 
occurs a F =  2 (8~ (instead of F =  4). 

Regarding the spacing averages, the area of a region is not relevant in 
one dimension, so we only need consider/~ and /~+ .  The considerations of 
Section 2.3 are directly applicable. Repeating these considerations, we are 
led to conjecture that for a fixed and p ~ 0, 

f l /2 ,  F>~ 1 (2.29) 
/~ .,~ 1_~ where ao = ~ 1 - F/2, F <~ 1 

aoP 

and 

( a(F)/p, F< 1 
~ a(F) a(ap) c-2, l < F < 2  

K+ }aa(2)  log[1/(o-p)], F - - 2  

(o-(r-1)/(r-2), r > 2  

where a(F) is an undertermined function of F. 

(2.30) 

3. EXACT RESULTS AT 1"=2 

3.1. Scaling Behavior of ho(R) 
At the coupling F =  2 we have the exact result (5~ (see Appendix A for 

an alternative derivation) 

log h0(R/= 2 I; log 2LmR/21J j=l  ~ ( j - - l ) !  Kj(mR) (3.1) 

where A is of the order of R/a, Kj(x) denotes the j th-order  Bessel function 
of the second kind, and m = 2r~L, where ~ denotes the fugacity. We want 
to investigate (3.1) in the limit (2.9). With a fixed and m ~ 0 ,  we know (9) 

p ~ m2 log 1 (3.2) 
/'no" 
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so that the limit (2.9) requires 

(mR) 2 1 
m ~ 0 ,  R--* ~ ,  - - l o g - - =  x2 fixed (3.3) 

m~r 

Using (3.3) to eliminate R gives that we seek the value of 

(  341 
m ~ 0 j = l  L -(~-~i~. Kj [ log(1/ma)]m]j  

where 
g 1/2 x 

M = {am [log(1/ma) ] 1/2 } (3.5) 

The argument of the Bessel function in (3.4) is tending to zero. This 
suggests we use the small-z expansion (1~ 

K, ( z )  2 \ 2 ]  ( n - l ) !  1 -  n_--~+O ~ (3.6) 

valid for n ~> 3, with the leading-order asymptotic behavior given by the 
terms outside the square brackets for n = 1 and 2. The expression (3.4) then 
becomes 

7~X 2 M 1 
- 2  lim __~ (3.7) 

m-.o41og(1/ma)j 2 J -  1 

which can immediately be evaluated to give 

Ho(x ) = e -  '~x2/2 (3.8) 

This is in precise agreement with (2.13) since a o = 1/2 at F =  2. (1) 

3.2. Exact Evaluation of h o ( + ,  R) 

Since ho(R) is already known, from (2.16) we see that to calculate 
ho( + ,  R) exactly at F = 2, it suffices to calculate 

z Z(+,R) 
_=(+) S(R) 

(3.9) 

Furthermore, from (2.25a) we have 

s / s ( +  ) = ~/p + 

,,- 1 / [ m L  log(1/ma)] 

(3.10a) 

(3.10b) 

where we have used (3.2) to obtain (3.10b). 
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Thus it remains to calculate 

f ( R )  := 2( +,  R) /S (R)  (3.11 ) 

which we do by considering the TCP with position-dependent fugacities 
(2.19), using the method of Curnu and Jancovici ~9) to calculate the density 
of the positive particles at the origin of such a system and then applying 
the formula (2.20). Let us define 

m(r) = 2rcL~(r) (3.12) 

where ~(r) is given by (2.19). The method of ref. 9 gives 

f ( R ) =  lim 2rcLG(0) (3.13) 
m0-+0 

where mo = m(0) and G(r) satisfies the differential equation 

[ma(r) - V 2] G(r) = m(r) 6(r) (3.14) 

with the boundary conditions that at r =  R (the hole radius), G and its 
derivative 

m ( r ) -~x + G 

are continuous. 
The general solution of (3.14) with m(r) given by (3.12) and (2.19) is 

y(mo/2rO[Ko(mor ) + alo(mor)], 0 < r < R 
G(r) (3.15) 

~(m/2rc) bKo(mr), r > R 

The constants a and b are determined using the boundary conditions. We 
can then find the value of 

lim G(r) (3.16) 
m0~O 

(which is independent of r for 0 < r < R) and equating (3.16) to (3.13), we 
obtain 

L Ko(mR) 
f i R )  = (3.17) 

R KI(mR) 

3.3. Low-Dens i ty  Behavior  o f / ~ +  

From the formulas (2.3b), (2.16), and (2.25a) and the definition 
(3.10a), we have that in general 

/~§ = ~ + ~-~-+ h o ( R ) f ( R ) d R  (3.18) 
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Changing variables x = x/f iR gives 

= ho f dx (3.19) 
P+ ,/3 

Now consider the limit p ~ 0 (or equivalently, m--, 0) with a fixed. 
From Section 3.1 we have 

ho(x /x fp  ) --* e ,~x2/2 (3.20) 

while using (3.2) in (3.17) and the small-argument expansions of Ko(x) and 
Kl(x) ,  ~~ we obtain that for fixed x 

(1 /mL ) f ( x / x / p  ) ,,~ �89 log log(I/me) (3.21) 

Using (3.20), (3.21), and (3.lOb) in (3.19) gives 

1 1 log log(l/me) 
/~+ (3.22) 

p 2x/2 log(l/me) 

This behavior is intermediate between the conjectured forms (2.17) for 
F <  2 and (2.27) for F >  2, as would be expected. 

3.4. Exact Calculat ion o f / 7 +  in a One-Dimensional  Domain 

As noted in the Introduction, in the dipole phase we expect the closest 
particle to a fixed positive charged particle to have a negative charge. Thus 
we can consider the system with a positive charge fixed at the origin and 
calculate the probability,/~o(+, R), say, that there are no negative charges 
within a distance R of the origin. Use of (2.3b) with ho(+,  R) replaced by 
ho(+,  R) should then still give the correct asymptotic behavior of /~+.  

Here we seek to calculate ,~o( +,  R) for the TCP confined to a one- 
dimensional domain at the coupling F =  2. More explicitly, the domain is 
taken as two interlaced one-dimensional lattices, with the spacing within 
the sublattices ~ and the closest spacing between lattices ~b, 0 < ~b < 1/2. 
The particle-free distance R is then measured in units of lattice spacings, so 
R = lz, say, where l E N. 

The method of calculating/~0( + ,  R) for the TCP on a one-dimensional 
lattice is very different from that of calculating ho( + ,  R) for the TCP in a 
two-dimensional domain presented above. In the one-dimensional case we 
use the general formula ~S) 

p(0;nl ,  n2 ..... nj) (3.23) ho(+, ~=~--$7-, 2. ~ " '  
V + j = 0 J " n 1 - - l  - - I  
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where p + denotes the density of positive charges and p(0, nl ..... nj) denotes 
the dimensionless distribution function for one positive charge fixed at the 
origin, on the sublattice for the positive charges, and j negative charges 
fixed at the lattice points labeled by nl ..... n s on the sublattice for the 
negative charges. 

At F =  2 we have the exact results (11's) 

zp + = (3.24) 
1 + 3  

and 

p(0; nl,...,nj) = det 

where 

1 + ~  L r:(l~ + -~-~~ ~--+ ~b iJ a = 1,..., j 

Ere(1 + ~)(n~ + O)J:= l,...,s ~,t~=l,...,j 
(3.25) 

= \ ~ j  (3.26) 

Note that the matrix in (3.25) is diagonal apart from the first row and 
column. Substituting (3.24) and (3.25) in (3.23), we can recognize the 
resulting expression as an expanded form of the formula 

tlo(+, lz) 

= 1+r  det 1+3 L)z(1 T~-~-k~b)Jk = --' , . . . , '  1 

L~z(1 + #) ( j+  ~)Jj= -,, ,t- 1 Jj, k = 

(3.27) 

(see ref. 5 for similar identities). It is straightforward to evaluate this 
determinant and thus obtain the explicit evaluation 

/ 1 \2 l /  sin2rcq~ J2,1 1 ) 
f % ( + , l z ) = ~ - ~ )  ~1 7r-- 2- j~_ t ( j+~-  ~_ (3.28) 

Our aim in this section is to s tudy/~+.  With the understanding that 
we interested in the distance to the closest negative charge, /~+ and 
flo(+, lz) are related by 
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-~+ =~ ~ /(/~o(+,/~)-/~o(+, ( l+ 1)~)) (3.29a) 
/ = 0  

= ~ ~ /~( +,  kc) (3.29b) 
/ = 1  

The low-density dehavior of /~+ is determined by the large-/ form of 
/~( +, IT). Using the summation formula 

1 7c 2 
(3.30) 

2.. (j+~b)2 sin27r~b j =  co 

we can readily deduce that for large l 

t-1 1 7z 2 2 
j~l'=- (J+~b)2"~sin27zq ~ l (3.31) 

and thus 

/~o(+,lt) 2sin2rc~bl( 1 '~:' 
~2 l \ - i - ~  / (3.32) 

Substituting (3.32) in (3.29b) and using (3.24) (with p+ replaced by 
�89 p) shows that for low density 

/~+ ,-~ -2"c ~ log rp (3.33) 
7 Z -  

The symmetric case ~b = 1/2 is analogous to the continuum with r = a. The 
exact asymptotic form (3.33) then agrees with (2.30) and furthermore gives 
a(2) = 2/~ 2. 

4. C O N C L U S I O N  

The main points of the present paper are the low-density behaviors of 
the average distance/~+ between a particle and its nearest neighbor and of 
the average R 2 of that distance squared. For F <  2, a hard core plays no 
role in the low-density limit; in this limit, the density p provides the only 
relevant length scale pl/2, and R+ and R 2 behave like p-1/2 and p- l ,  
respectively [see (2.17) and (2.18)]. For F > 2 ,  a hard core becomes 
necessary to prevent the collapse of oppositely charged particles owing to 
a short-range divergence of the potential. With a hard core included, the 
long-range property of the potential creates a stronger tendency of pairing 
between oppositely charged species for increasing F. This pairing effect is 

822/69/1-2-12 
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responsible for the behaviors (2.27) and (2.28): when F increases, R+ and 
R2+ as functions of pl/2 are less and less divergent at p = 0. Their behaviors 
change discontinuously at special values of F. Finally, for F large enough, 
/~+ and R2+ become finite at p = 0, as expected in a fluid made of tightly 
bound pairs. 

A P P E N D I X  A 

Here we rederive (3.1) by showing that when a hole of radius R is 
made in the plasma, the number of particles is changed by 

Z Kt l(m R) 
A N =  - -2mR 

t= 1 KI (mR)  
(A1) 

where A is a cutoff. At F =  2, oppositely charged point particles would 
collapse; finite results have been obtained by introducing a small hard core 
of size o in the interaction. An equivalent procedure is to truncate (A1) and 
similar sums of some value A; the known asymptotic form (9) of the density 
p(m, ~) as a ~ 0 is recovered (5) by choosing A of the order of R/tr. 

Assuming (A1), the result (3.1) can be reclaimed by integrating the 
statistical mechanical formula 

c ~ 3(R) (A2)  A N = rn ~m l ~ g ,~ 

and using the condition 

~ ( 0 ) / 3  = 1 (A3) 

to determine the constant of integration. 
We note that A N  can naturally be decomposed into two parts, 

AN = ANin  -4- ANout (A4) 

where 3Nin(out ) is the change in the number of particles inside (outside) the 
hole. Clearly, 

3N~. = - n R 2 p  (AS) 

where p is the particle in the bulk. The term ANou t is given in terms of the 
densities p + (r)= p_ (r) outside the hole via the formula 

ANout= 2 f ;  [ p + ( r ) - p + ]  2nrdr  (A6) 
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1 where p + = 5p. We expect this term to be cutoff independent (i.e., finite in 
the limit A ~ oo ). 

The method of Cornu and Jancovici (9) allows the excess density in 
(A6) and thus ANou t to be calculated. We find 

where 

E l A ANout=(mR) 2 ~+ ~ ft(mR) -2mR ~tK'-l(mR) (A7) 

fl(rnR) :=Ii(mR) Kz(mR)+ Iz l(mR) Kz 1(mR) (AS) 

A cutoff A in (A7) has been introduced since the sums considered 
separately diverge logarithmically; however, the divergences cancel and 
(A7) is in fact finite in the limit A ~ o% as expected. The simplification 
which results from considering the sums separately is that for large A 

A 2A 
f,(mR) ~ log ~-~ + o(I) (A9) 

/ = 1  

which can be deduced from (A8) and the formula 

Ii(x) Kt(x) = Jo(2X sinh t)e -2tt dt (A10) 

Since with A as a cutoff (s) 

m 2 / 2A 1 \ 
=  log + ) (Al l )  

and consequently 

m 2 / "  2A 1\ 
p = --~-- ~log ~-~ + ~ ) (A12) 

substituting (A9) in (A7) and adding to (A5) gives (A1), as required. 

A P P E N D I X  B 

In this appendix we give the large-R behavior of Z( + ,  R)/2(R) for the 
TCP in its conducting phase. This follows from the assumption that at 
macroscopic distances from the plasma, it behaves like an ideal conductor. 
This implies that for large R 

•( +, R)/Z(R) ~ e-B~ (B1) 
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where U denotes the electrostatic energy of the fixed charge-induced 
surface charge system. The electrostatic energy consists of two terms: the 
self-energy of the induced surface charge (U1 say) and the energy of 
interaction between the induced surface charge and the charge at the origin 
(U2 say). A simple calculation gives 

q 2  R 
U1 = - ~- tog ~ and U2 = q2 log R (B2) 

Substituting (B2) in (B1) gives the sum rule that for large R 

F.( +, R)/F~(R) ~ (L/R) r/2 (B3) 

This sum rule can be tested at F =  2, since the exact result (3.17) gives 

Z( +, R) /Z(R)  ~ L /R  (B4) 

which agrees with the prediction of (B3). 

ACKNOWLEDGMENT 

The work of P.J.F. was supported by the Australian Research Council. 

REFERENCES 

1. P. Minnhagen,  Rev. Mod. Phys. 59:1001 (1987). 
2. M. Lavaud, 3". Stat. Phys. 49:1191 (1987). 
3. B. Widom, J. Chem. Phys. 39:2808 (1963). 
4. J. P. Hansen and P. Viot, J. Star. Phys. 38:823 (1985). 
5. P. J. Forrester and C. Pisani, Nucl. Phys. B 374:720 (1992). 
6. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6:1181 (1973). 
7. A. Schmid, Phys. Rev. Lett. 51:1506 (1983). 
8. H. Shultz, J. Phys. A 14:3277 (1981). 
9. F. Cornu and B. Jancovici, J. Chem. Phys. 90:2444 (1989). 

10. E. T. Whit taker and G. N. Watson, A Course of Modern Analysis 4th ed. (Cambridge 
University Press, Cambridge, 1962). 

11. P. J. Forrester and M. L. Rosinberg, Int. J. Mod. Phys. B 4:943 (1990). 


